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THE PROBLEM
The battery is a key component in any Elec-

tric Vehicle (EV). In this work we focus on im-
proving the battery’s life, which is greatly affected
by the method of use. Each battery is a pack
of cells series connected in parallel designed to
be discharged and charged with specific optimal
currents, whereby other currents, i.e. higher or
lower, may have negative effects on the life of
the battery. We refer to these negative effects as
penalties that are aggregate over time and pro-
pose a discharge method to minimize them. The
common discharge method is very simple but far
from optimal. In this method the power demand
is supplied using all the cells series where the cur-
rent from each is the same. The method we pro-
pose is an advanced switching algorithm that for
each power demand selects the cells’ series and
controls the discharge current from each, based
on understanding the electrochemical properties
of the individual cells.

PENALTY FUNCTION
Each battery’s chemistry is designed to be dis-

charged in a specific current, while higher or
lower currents have negative effects on it . More-
over, an optimal discharge current exists, denoted
IOPT , for each battery and depends on the its spe-
cific chemistry. Based on these insights, we pro-
pose a penalty function that maps each discharge
current to a numeric value reflecting its detrimen-
tal affect on the battery’s life. We assume the fol-
lowing linear penalty function.
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MATHEMATICAL MODEL
The problem where all the power demands

are known in advance can be described as the fol-
lowing mathematical model using the notation:

• IOPT : the optimal discharge current.
• dj : the j power demand.
• si: the i cells series.
• C: the initial capacity of all cells series.
• Ci

j : the capacity of si before dj .
• Iij : the discharge current of si for dj .

min
n∑

i=1

m∑
j=1

Penalty(Iij)

s.t.
n∑

i=1

Iij ≤ C ∀j = 1 . . .m

m∑
j=1

Iij = di ∀i = 1 . . . n

0 ≤ Iij , Iij ∈ R ∀i = 1 . . . n, j = 1 . . .m

CONTRIBUTIONS
Theoretical and empirical contributions:

1. Prove the problem is strongly NP-hard,
even if all the power demands are known
in advance.

2. Prove it is hard to approximate within an
additive gap of Ω(m) from the optimum.

3. Propose an online algorithm with an addi-
tive gap of 1.5m - independent of the num-
ber of demands in the sequence and of the
initial capacity of the batteries.

4. Provide a lower bound of 1.5 for the com-
petitive ratio of any online algorithm.

5. Propose greedy and heuristic algorithms.

6. Evaluate the proposed algorithms using
simulations of known driving cycles and
compare their performances to those of the
common naive algorithm.

SIMULATION DATA - DRIVING CYCLES
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We evaluated our algorithms using simula-
tions on standard testing driving cycles for mea-
suring fossil fuel emission and consumption of
vehicles. The driving cycles, which consisted of
velocity-time measurements in one second inter-
vals, were translated into energy-time data, as-

suming a vehicle weighs 1.5 tons and a 360V bat-
tery pack. Negative energy values, i.e. energy that
was generated by slowing the EV, was ignored as
charging is not part of the scope of this paper. No-
tice the x-axis may differ from one plot to another
as the duration of the driving cycles are different.

The driving cycles we used:
Aggressive - aggressive driving in USA.
Europe - urban and highway driving in Europe.
US - urban driving in the USA.
Japan - urban driving in Japan.

EMPIRICAL RESULTS
The total achieved penalty comparing the

naive algorithm. The lower the value the better.
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Using the algorithms the penalty can be signifi-
cantly reduced and almost avoided as the number
of batteries increase. The heuristic algorithm out-
performed the greedy only in the urban driving
cycles where the demands were not too high.


